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Two-Stream Multi-Rate Recurrent Neural
Network for Video-Based Pedestrian
Re-Identification

Zhiqgiang Zeng, Zhihui Li*, De Cheng, Huaxiang Zhang, Kun Zhan and Yi Yang

Abstract—Video-based pedestrian re-identification is an
emerging task in video surveillance and is closely related to
several real-world applications. Its goal is to match pedes-
trians across multiple non-overlapping network cameras.
Despite the recent effort, the performance of pedestrian re-
identification needs further improvement. Hence, we propose
a novel two-stream multi-rate recurrent neural network for
video-based pedestrian re-identification with two inherent
advantages: (1) capturing the static spatial and temporal
information; (2) dealing with motion speed variance. Given
video sequences of pedestrians, we start with extracting
spatial and motion features using two different deep neural
networks. Then we explore the feature correlation which
results in a regularized fusion network integrating the
two aforementioned networks. Considering that pedestrians,
sometimes even the same pedestrian, move in different
speeds across different camera views, we extend our approach
by feeding the two networks into a multi-rate recurrent
network to exploit the temporal correlations. Extensive ex-
periments have been conducted on two real-world video-
based pedestrian re-identification benchmarks: iLIDS-VID
and PRID 2011 datasets. The experimental results confirm the
efficacy of the proposed method. Our code will be released
upon acceptance.

Index Terms—Video Surveillance,
Identification, Recurrent Neural Networks

Person Re-

I. INTRODUCTION

HE extensive deployment of close-circuit television
cameras (CCTV) has made surveillance video ac-
quisition convenient for the general public [1], [2], [3],
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[4], [5], [6]. Consequently, the number of surveillance
videos has grown at an unprecedented rate. How to
effectively interpret these data has become an important
challenge for multimedia and computer vision commu-
nities. One of the most challenging tasks is to re-associate
a specific pedestrian across non-overlapping network
cameras, which is known as pedestrian re-identification
(re-id) [7], [8], [9]. It has received a lot of research
attention since it can be applied to real-world video
surveillance [10], [11], [12], [13], but remains a chal-
lenging problem and needs more effort for performance
improvement.

Most existing work of pedestrian re-identification fo-
cuses on image based person re-id problem [14], [15],
which generally falls into two categories. The first group
aims to extract discriminative and informative features
that are invariant to viewpoint and background modifi-
cation [16], [17], [18], [19]. For example, some researchers
propose to project the original features into a new space
with higher discriminative ability [20]. Given extracted
features, the second group employs metric learning
methods that emphasize inter-pedestrian distance and
de-emphasize intra-pedestrian distance [21]. The final
decision is made based on the learnt metric. Various
methods have been proposed in this direction, e.g.,
Relevance Component Analysis (RCA) [22], Large Mar-
gin Nearest-Neighbour (LMNN) [23], Relaxed Pairwise
Learning (PRLM) [21], etc. Although researchers have
achieved promising results, pedestrian re-identification
remains a challenging problem. On one hand, the per-
formance is yet to be robust because there are usually
significant changes of a pedestrian’s appearance across
different camera views due to the changes in body pose,
view angle and illumination. On the other hand, in a
real-world scenario pedestrians always appear in a video
sequence instead of a still image. These traditional image
based re-id algorithms fail to consider the temporal
information in the video sequences.

Regarding video sequences of pedestrians, researchers
have proposed several algorithms to consider the rich
temporal information contained in them and re-associate
pedestrians in the sequence level [24], [25], [26], [27],
[28]. For example, [29], [30], [31] first extract spatial-
temporal features to represent each pedestrian sequence
and then conduct pedestrian re-identification with these
features. Specifically, they break down each video to
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Fig. 1: An overview of the proposed two-stream multi-rate recurrent neural network for video-based pedestrian

re-identification.

generate multiple fragments (walking cycles), and extract
spatial-temporal feature from each fragment, and then
represent each pedestrian with a set of the extracted
spatial-temporal features. Hence, they cast the vide-
based pedestrian re-id as a set-to-set matching problem.
Researchers have also attempted to utilize deep learning
to simultaneously conduct feature representation learn-
ing and metric learning [32], [33], [28]. McLaughlin et
al. employ a Siamese network for discriminative feature
learning and a RNN to exploit the interaction between
different video frames [32]. Yan et al. adopt the Long-
Short Term Memory (LSTM) to merge the frame-level
features for video-based re-id [33]. Although these al-
gorithms have acheived promising results on standard
benchmark datasets, they still have the following draw-
backs. First, most of these algorithms use a single con-
volutional neural network (CNN) for both spatial and
temporal feature extraction. Nonetheless, the learning
ability of spatial and temporal information is limited
with a single CNN. Second, they fail to consider that
pedestrians, sometimes even the same pedestrian, move
in different speed across different camera views.

To address the above limitations, we propose a two-
stream multi-rate recurrent neural network for video-
based pedestrian re-id, which can not only capture both
spatial and temporal information sufficiently, but also
enable information sharing between different encoding
rates, resulting in a multi-resolution representation that
is robust to the motion rate of pedestrians. Figure 1
gives an overview of the proposed two-steam multi-rate
recurrent neural network for video-based pedestrian re-
id. We first extract spatial and motion features using

two types of CNN, which are trained from static frames
and stacked motion optical flows respectively. Then we
feed these features into two sets of multi-rate recurrent
neural networks (a GRU to be specific), which can encode
sequences of a pedestrian with different intervals. This
learning process enables the system to be more capable
of dealing with motion speed variance. To step further,
we adopt a regularized fusion layer to combine these
two features. Finally, we combine the output of the
fusion layer and the multi-rate GRU, attaining in the final
results.

Contributions. The contributions of this paper can be
summarized as follows. (1) We propose a novel two-
stream multi-rate recurrent neural network for video-
based pedestrian re-id problem. It can not only model
spatial and temporal information, but also deal with
motion speed variance. (2) To explore feature correlation,
we employ a regularized fusion network to merge the
spatial and motion features for pedestrian re-id. (3) To
validate the effectiveness of the proposed algorithm,
we conduct extensive experiments on two benchmark
datasets: iLIDS-VID [29] and PRID-2011 [20]. Compared
to the state-of-the-art alternatives, the proposed algo-
rithm consistently achieves the best performance.

II. ReLatep WoRrk
A. Image-Based Pedestrian Re-1D

Previous work on image-based pedestrian re-id can
be grouped into two categories: invariant feature rep-
resentation learning and distance metric learning. The
first category aims to learn discriminate features that
are invariant to view-point and environmental changes.
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It plays a vital role in pedestrian re-id problem. [34]
proposes to simultaneously learn an ensemble of infor-
mative local features and classifiers to combine spatial
and color information. It also shows how to use the
AdaBoost algorithm to learn both the object class specific
representation and the discriminative recognition model.
[17] adopts pictorial structures to localize the parts,
extracts and matches their descriptors. The algorithm
learns the appearance of an individual and improves
the localization of its parts, thus obtaining more reliable
visual features for pedestrian re-id. [35] employs Fisher
Vectors (FV) to encode the local descriptors, resulting
in a global representation of an image. Based on the
logchromaticity (log) color space, [16] proposes a new
illumination-invariant feature representation and indi-
cates that using color as a single cue shows promising
performance for pedestrian re-id under greatly varying
imaging conditions.

Given extracted discriminative feature representations,
researchers use distance metric learning to make the dis-
tance between the same pedestrian close while keeping
different pedestrians separated. [23] propose a large mar-
gin nearest neighbor metric (LMNN) for the traditional
k-NN classification. Their framework mades no paramet-
ric assumptions about the structure or distribution of the
data and scales naturally to problems with large number
of classes. [36] reformulates the pedestrian re-id problem
as a ranking problem and learns a subspace where the
potential true match is given highest ranking rather than
any direct distance measure. [37] formulates pedestrian
re-id as a relative distance comparison learning problem
to learn the optimal similarity metric between a pair of
pedestrian images. [38] analyzes the horizontal occur-
rence of local features and maximizes the occurrence to
make a stable representation against viewpoint changes.
It learns a discriminant low dimensional subspace by
cross-view quadratic discriminant analysis, and simulta-
neously learns the distance metric based on the derived
subspace.

B. Video-Based Pedestrian Re-ID

In many realistic scenarios, pedestrians always appear
in a video rather than in an image. The existing image-
based methods fail to make full use of the temporal
sequence information in surveillance videos. Several al-
gorithms have been proposed to solve the multi-shot
pedestrian re-id problem, i.e., to match pedestrians at
the video level. [39] proposes to solve the video-based
pedestrian re-id problem by employing Dynamic Time
Warping (DTW). [40] adopts conditional random field
(CRF) to ensure the final labeling gives similar labels to
detections that are similar in feature space. [29] derives a
multi-fragment based space-time feature representation
of image sequence of pedestrians, based on which a
discriminative video ranking model is developed for
cross-view re-identification by simultaneously selecting
and matching more reliable space-time features from

video fragments. [41] hypothesizes that the feature vector
of a probe image approximately lies in the linear span
of the corresponding gallery feature vectors in a learned
embedding space, and formulates the re-id problem
as a block sparse recovery problem. [31] proposes a
spatio-temporal appearance representation method to-
gether with the extraction of feature vectors that encode
the spatially and temporally aligned appearance of the
pedestrian in a walking cycle. [42] proposes a top-push
distance learning (TDL) model to address the video-
based pedestrian re-id problem and introduces a top-
push constraint to quantify ambiguous video represen-
tation.

Deep learning based methods have also been em-
ployed for pedestrian re-id problem by simultaneously
learning feature representation and distance metric
learning. They are trained based on pairs [43] or triplets
[44] of input images. A deep network, ie. Siamese
network [45], is employed for feature mapping from
raw images to a feature space where images from the
same pedestrians are close while images from different
pedestrians are well separated. [32] introduces a new
temporal deep neural network architecture for video-
based re-id problem. It utilizes optical flow, recurrent
layers and mean-pooling to embed the temporal hier-
archy inherent to the problem in the form of short,
middle and long term temporal information respectively.
Different from other multi-shot pedestrian re-id methods
that use complex feature descriptors or design com-
plex matching metrics, [33] aims to learn discriminate
sequence level representation from simple frame-wise
features using the Long-Short Term Memory (LSTM)
network to aggregate the features in a recurrent manner.
[46] proposes an end-to-end Accumulative Motion Con-
vext Network (AMOC) based method addressing video-
based pedestrian re-id problem through joint spatial
appearance learning and motion context accumulating
from raw video frames. However, these approaches have
the following limitations. First, none of these approaches
consider using optical flow ConvNet to capture temporal
motion features. Second, all of them fail to consider the
fact that pedestrians, sometimes even the same pedes-
trian, may move in different speed across different cam-
era views. To overcome these limitations, in this paper
we propose a novel two-stream multi-rate recurrent neu-
ral network for vide-based pedestrian re-identification.
It can not only model spatial and temporal information,
but also deal with motion speed variance.

III. Tue PrOPOSED APPROACH

In this section, we first extract the spatial and motion
features using two types of CNN. Then we feed these
features into two sets of Gated Recurrent Unit (GRU)-
based temporal modeling. GRU has been firstly used for
video analysis in [47]. We further adopt a regularized
fusion layer to combine these two features. Finally, we
combine the output of the fusion layer and the multi-
rate GRU.
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A. Overview

Figure 1 shows an overview of the proposed two-
stream multi-rate recurrent neural network for video-
based pedestrian re-identification. We first use the two-
stream CNN approach [48] to extract spatial and motion
features, and then feed them into a multi-rate GRU for
temporal modeling, which is capable of dealing with
speed variance. This model is built upon the observation
that pedestrians, sometimes even the same pedestrian,
move in different speed across different camera views.
We also employ an average pooling approach to combine
the spatial and motion features, and fuse them using a
regularized fusion layer. Finally, we combine the output
of the fusion layer and the multi-rate GRU, attaining the
final results.

B. Spatial and Motion CNN Features

In cognitive science, researchers claim that human
visual system processes what we see through the ventral
pathway and the dorsal pathway. The ventral path-
way focuses on the spatial information, such as shape
and color, while the dorsal pathway focuses on the
motion information. Similarly, the video sequence of
a pedestrian can be decomposed into the spatial and
temporal components. Specifically, the pedestrian in the
sequence frame belongs to the spatial component. The
complementary temporal component contains motion
information across sequences. We adopt the recent two-
stream neural network approach [48], [49], [50] to extract
the spatial and motion features. Different from existing
work on video-based pedestrian re-id [32] which uses
stacked frames in short time windows, we decouple the
sequences into spatial and motion streams modeled by
two CNNs individually. We build the spatial stream on
the sequence frames following the standard CNN-based
image classification pipeline that is capable of exploring
the static appearance information contained in the video
frames. We build the motion stream on the stacked
optical flows, which are computed between each pair of
adjacent video sequence frames.

C. Temporal Modeling with Multi-Rate GRU

We first revisit the basic GRU, which is a particular
type of RNN and was proposed to allow each recurrent
unit to adaptively capture dependencies of different time
scales [51]. It does not have any mechanism to control the
degree to which its state is exposed, but rather exposes
the whole state each time.

More formally, at each time step ¢, given a frame
representation x; and previous state h;_1, the GRU cell
generates a hidden state h; and an output oy iteratively
as follows:

r; = o(W,xt + Urh;_q), M
z; = c(Wzxt + Uzhy_q), 2)
h; = tanh(W,;xt + Uﬁ(l‘t ®© htfl)), 3)

hi=(1-2z)oh 1 +2zOh 4)
o = Wohy, 5)

where o is the sigmoid activation function, r¢ is the
reset gate, z; is the update gate, h; is the internal state,
W, and U, are weight matrices and © is the element-
wise multiplication. When the reset gate is close to 0,
it effectively forces the unit to act as if it is reading the
first symbol of an input sequence, hence allowing it to
forget the previously computed state [52]. The output
o; is calculated by a linear transformation from the
state h;. For simplicity, neuron biases are omitted in the
equations. We can write the entire iteration compactly
as:

ht = GRU(Xt, ht—l)/ 0y = Woht. (6)

After a maximum of S iterations, we get the final state
hg of the last step.

a) Multi-rate Gated Recurrent Unit.: Next, we discuss
the multi-rate extension of GRU as in [53], [13]. The
clockwork RNN [53] has delayed connections and units
operating at different time-scales. The novelty of clock-
work RNN is that its states and weights are divided into
a few groups to capture temporal information at different
rates. Following [13], we divide state h; into k groups and
each group g; has a clock period T;, where i € {1,...,k}.
Empirically, we set k = 3 and T7, T, Tz = 1, 3, 6. Formally,
at each step t, weight matrices of the group i with (¢
mod T;) = 0 are activated and are used to calculate the
next state as follows:

. e L
1 =0(Wexe + )_U/h] ), 7)
j=b
. . 4 L
zi =o(Wix;+ Y_UJH, ), (8)
j=b
. . e .. .
hl = tanh (W;x; + Z U;-l’](r,g ® h{;l)), 9)
j=b

t=(1-2z)Oh_ +2 0k, (10)
where the state weight matrices U, are divided into
k row-blocks and each row-block is partitioned into k
column-blocks. The input weight matrices W, are di-
vided into k row-blocks and W denotes the weights in
row-block i. There are two modes for state transition, and
depending on which mode we operate, we have

b=1e=1i,
b=ie=k,
In the fast to slow mode, states of faster groups (i.e.
larger T;) include previous slower states (i.e. smaller T;).
Thus, the faster states incorporate not only information at
the current rate but also information that is slower and
more refined. The intuition for the fast to slow mode
is that when it is activated, we can take advantage of
the information already encoded in the slower states.
Empirically, in this paper we use the fast to slow mode
for its better performance.

Fast — slow mode 1)
Slow — fast mode
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When t mod T; # 0, the previous state is directly
passed over to the next state, i.c.,

i=h_,. (12)

We illustrate the state transition process in Figure 1.
We note that training is much faster than traditional
GRU with the same number of hidden nodes since not
all previous modules are evaluated at every time step.

D. Fusion Strategies

Fusing multiple features is a standard technique in
video analysis, which can often lead to better perfor-
mance. This is because correlations may exist between
the spatial and the temporal features of the same pedes-
trian sequence. Feature fusion method should be capa-
ble of exploring the correlations while maintaining the
unique characteristics to generate a better fused repre-
sentation. Instead of using a naive late fusion method, we
utilize a regularized fusion layer to combine the results.
This is shown in Figure 1. To begin with, we employ
average pooling to fuse the frame-level features and
achieve the video-level representations. We non-linearly
map the input features to a specific layer and then fuse
these features using a regularized fusion layer.

Let N be the total number of training sequences with
both the spatial and the motion representations. For
the n-th sequence sample, it can be represented by
(x5, x",yu), where x;, and x!' represent the averaged
spatial and motion feature respectively. y, represents
the label of the n-th sequence. We denote f(x) as the
mapping function of the neural network from the input
x to the output.

Following [49], we propose to preserve the unique
discriminative information so that the complementary
information can be explored to improve re-id perfor-
mance. Hence, we add another regularizer to the objec-
tive function, arriving at:

. A
min £+ A ®(W) + 7"'|\wE 21+ A3|[WE

1. (13)

We use the last term as a complement of the ¢/, ;-norm.
It provides the robustness of the ¢, ;-norm by sharing in-
correct features among different feature representations.
In this way, we can allow different representations to
emphasize different hidden neurons. We optimize the
objective function using the gradient descent method.
We will introduce the parameter tuning later.

IV. ExPERIMENTS

A. Dataset Description

We carry out our experimental comparison on the
following two real-world datasets:

PPy sssidsss

920

80

70

0 Spatial CNN
-Spatial GRU
60l ¢ Spatial MR GRU
+CNN + MR GRU (Spatial) Sra

& Spatial CNN
)i & Spatial GRU
& Spatial MR GRU
i . #CNN + MR GRU (Spatial)
5 o [© CNN + MR GRU (Spatial & Motion)| 70 © CNN + MR GRU (Spi‘,@ & Motion)
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(a) iLIDS-VID (b) PRID 2011

Matching Rate (%)
Matching Rate (%)

Fig. 2: Performance of GRU, MR GRU and the CNN
models trained with the spatial and short-term motion
features on ILIDS-VID and PRID-2011 datasets.

a) iLIDS-VID dataset [29].: The iLIDS-VID dataset
consists of 600 video sequences of 300 distinct individ-
uals. Each video sequence has variable length, ranging
from 23 frames to 192 frames, with an average length
of 73. This dataset is challenging due to clothing simi-
larities among people, lighting and viewpoint variations
across camera views, cluttered background, and random
occlusions.

b) PRID 2011 dataset [20].: The PRID 2011 dataset
contains 400 video sequences of 200 randomly sampled
people from two cameras. Each video sequence has
variable length ranging from 5 to 675 frames, with an
average length of 100. Following [33], [29], we use the
sequence pairs with more than 21 frames in all the
experiments.

B. Experimental Setup

To extract features, we adopt the recently proposed
VGG [54] and CNN_M [48] networks. These two net-
works have achieved promising results on the ImageNet
validation set. We first train the spatial CNN on Ima-
geNet and then fine-tune it on the re-id datasets. The re-
sulted spatial CNN is better than training it from scratch
on the re-id datasets. The motion CNN, by contrast, is
trained from scratch. Following [48], we also use simple
data augmentation methods like cropping and flipping
to train motion CNN.

When training the neural networks, we employ mini-
batch stochastic gradient descent. The momentum is
fixed at 0.9. The spatial CNN is fine-tuned, with its
learning rate starting from 1073, decreasing to 10*
after 14K iterations, and decreasing to 107> after 20K
iterations. When training the temporal network, we start
the learning rate from 1072 and decrease it to 1074
after 200K iterations. The experiments are implemented
using Torch. We run the experiments on NVIDIA Titan
X Pascal. The network weights of multi-rate GRU are
trained with ADAM [55]. We fix the learning rate at 104
and clip the global gradients at norm 10. The cell size is
set to 1,024.

Four layers of neurons are used for the regularized
fusion network. As shown in the middle of Figure 1, we
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use one layer with 200 neurons for spatial and temporal
features respectively. After that, we use one fusion layer
with the regularization norms. When training the fusion
network, we start the learning rate from 0.7. To avoid
over-fitting problem, we set the regularization param-
eter A7 to 3 x 1072, A, and A3 are tuned using cross-
validation.

Following [29], [32], we randomly split each dataset
into 50% of pedestrians for training and 50% of pedestri-
ans for testing for all experiments. During testing, we use
the first camera as the probe set and the second camera
as the gallery set. For all the used datasets, we evalu-
ate the performance by the average CMC (Cumulative
Matching Characteristics).

C. Effect of Temporal Modeling

First, we conduct experiments to evaluate the multi-
rate GRU (MR GRU) in terms of modeling the long-
term temporal features for pedestrian re-id. We report
the experimental results in Figure 2. Spatial CNN is used
as a baseline, which does not consider the temporal order
information of the sequence frames. It is observed that
Spatial GRU performs much better than Spatial CNN on
both datasets, which confirms the benefit of modeling
temporal information for pedestrian re-id. To demon-
strate the superiority of MR GRU over the classic GRU,
we further compare their performance on both datasets.
We observe that MR GRU performs much better than
GRU using CMC as an evaluation metric. We attribute
this improvement to the fact that MR GRU is capable of
considering motion variance.

Comparing to other baseline methods, we observe that
the proposed approach improves the re-id performance
on both datasets. On both datasets, it is noticed that the
best performance is obtained when the multi-rate GRU is
utilized with both spatial and motion features used. The
performance gain of using both spatial and motion fea-
tures over that of using spatial feature only demonstrates
that motion feature is able to provide complementary
information for pedestrian re-id problem.

D. Effect of Feature Fusion

In this section, we compare the regularized fusion
network with the alternative fusion methods in terms
of pedestrian re-id problem. We use the spatial CNN
and motion CNN features. We present the experimental
results in Table 1. We first report the performance of
individual features extracted from the fc6 layer of the
CNN models, based on which SVM is applied. We use
them as baseline methods to show the benefit of SVM
based fusion methods. We also compare with other
neural network based fusion methods.

From the experimental results reported in Table I,
we can see that the re-id performance is significantly
improved using the SVM based fusion methods, which
demonstrates that motion feature can provide comple-
mentary information for re-id. We also notice that the

performance of motion features is worse than that of
spatial features. This indicates that appearance feature
is more important than motion feature for pedestrian re-
id problem.

The regularized fusion network achieves consistently
better results than the other alternative neural network
based fusion methods. The performance gain of the
regularized fusion network validates its advantage for
pedestrian re-id. To evaluate the benefit of the regular-
izer, we also compare with a baseline method without
the regularizer. We can see that the regularizer helps
improve the re-id performance by 1.3% on iLIDS-VID in
terms of Rank-20 accuracy as shown in Table I

E. Comparison with State of the Art

We now compare the performance of the proposed
video-based re-id framework to the state-of-the-art ap-
proaches, including DVDL [15], AFDA [56], PaMM [57],
SI’DL [58], CNN+XQDA [59], STFV3D+KISSME [31],
DVR [30], RCN [32], andTDL [42]. To make a fair com-
parison, we test the approaches using the same re-id
datasets and the same training/test splits.

In Table II, we report experimental results on the
iLIDS-VID and PRID-2011 datasets in terms of CMC,
comparing with other state-of-the-art video-based pedes-
trian re-id systems. From the experimental results we can
see that the proposed approach is more competitive than
the other state-of-the-art related methods. For example,
our method outperforms RCN [32] for 1.4% and 8.7%
in terms of rank-1 matching rate on iLIDS-VID and
PRID-2011 datasets respectively. Note that RCN uses
optical flow and recurrent layers to embed the temporal
hierarchy. Hence, we attribute our improvement to the
fact that we utilize a temporal convnet to model temporal
features and the multi-rate GRU is capable of dealing
with motion variances.

V. CONCLUSIONS

We have proposed a novel two-stream multi-rate re-
current neural network for video-based pedestrian re-
identification. This network can not only capture static
visual and dynamic motion information, but also deal
with speed variance. In the framework, we first extract
the spatial and motion features using two types of
deep neural networks. We feed these two features to
separate multi-rate GRU network to capture temporal
information. We employ a fusion layer to fuse the two
features at sequence level to further boost the re-id
performance. To validate the re-id performance of the
proposed framework, we conduct extensive experiments
on two benchmark datasets. The experimental results
demonstrate that the proposed framework outperforms
the other alternatives remarkably.
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TABLE I: Performance comparison on ILIDS-VID and PRID-2011 datasets using different fusion approaches to
combine the spatial and short-term motion features.

iLIDS-VID PRID-2011
Rank1 Rank5 Rank10 Rank20 Rank1 Rank5 Rank10 Rank20
Spatial SVM 47.8 76.4 84.2 84.7 64.2 80.9 83.5 85.9
Motion SVM 28.5 54.3 62.7 634 43.8 59.4 62.8 64.1
SVM-EF 49.2 78.1 85.7 86.2 65.9 82.3 85.1 87.3
SVM-LF 50.4 794 86.8 874 67.2 84.1 85.9 88.5
SVM-MKL 50.8 80.8 87.4 87.9 68.1 84.8 86.3 88.8
NN-EF 49.8 78.5 86.4 87.8 67.8 84.7 86.3 88.6
NN-LF 49.5 78.1 85.9 87.2 67.1 84.3 85.8 87.9
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